
24©︎2021 Digital Hollywood University DHU JOURNAL Vol.08 2021

1. Introduction

1.1 The Closed Nature of the Game Industry
　The game development industry has historically been

very tight lipped about what kind of design processes they

use. It’s also relatively uncommon for game developers

to be act ive readers of research [1]. This means that

game research and game development are very much

disconnected, which is made worse by the fact that

research is a slow process, whereas the game industry

needs to keep innovating at high speed or risk being left

behind by their competitors.

 While this has gotten better over the years and game

developers are shar ing more development knowledge

with the public [2][3], generally the type of knowledge they

share is concrete in nature. For instance, specific graphics

techniques and algorithms, as well as technology used

to optimize game rendering are relatively easy to present

since they have measurable effects. However, more "fuzzy"

knowledge, like game design methods, are still very rare and

often either kept behind closed doors, or only showcased

at events with relatively high barriers of entry, such as the

annual Game Developers Conference. Even then, we cannot

expect that developers will share the latest innovations, as

was evidenced by research we ourselves have conducted.

In previous affordance design for games we conducted [4]

we presented a model for challenge encounters in games, in

which we likened these encounters in games to doors and

puzzles, with the doors needed to be opened with a key

gained through solving the puzzle, in order for the player

to progress. In the Game Developers Conference 2018, D.

Shaver and R. Yang from Naughty Dog presented something

remarkably similar about level design guidance principles

they called gates and valves [5], where the gates resembled

the doors we defined in our own research and the valves

took the role of opening those doors.

 There are a number of books by experienced game

developers that teach about game design methods, but

these too are relatively rare [6][7], meaning we generally

cannot count on game developers to make their results and

expertise available to a wider audience. Therefore, our best

chance of making game design methodology more known to

wider audience relies on game design researchers to create

a knowledge base in regards to game design methods.

1.2 The Problematic Nature of Game Development
 Unfortunately, depending on game design researchers to

conduct research on game design methods is problematic in

its own right. The reason for this is that in order to conduct

research into design methodology, one would need to be

well-versed in game development. This is difficult, since

game development is a multi-faceted development process;

to create a game, one needs a combination of skills from

fields such as programming, graphic design, animation,

sound design, interaction design, and many more. This is a

level of knowledge game researchers generally don’t have.

Another option would be to hire developers to make up for

the lacking knowledge, but since game development is not a

set process, even experienced developers will have trouble

properly estimating when their game will be effective, or

“fun.”

 Even on the fourth entry in a series that Naughty Dog had

been making for a decade, it was still impossible to plot out

just how long everything would take. “The problem is, you

couldn’t task creativity,” said Bruce Straley. “You can’t

task fun.”[8]

History of Game Development Options in Game Studies

ゲーム研究におけるゲーム開発の選択肢の歴史

Digital Hollywood University, Assistant Professor
デジタルハリウッド大学 助教

BRANDSE Michael ブランセ マイケル

　Game Development has historically been a complicated field, drawing from a wide variety of specializations,

including but not limited to programming, graphic design and interaction design. However, this need for

many high level skills has meant that game research has been difficult, as researchers either don’t have

the skills, time or budget for game development. This has limited game research primarily to studies using

existing developed games, which is particularly problematic for research fields that depend on comparative

research. In recent years however, the situation has markedly improved through 4 key developments;

financial accessibil ity, an increased knowledge base, the forming of the game development middleware

industry as well as the rise of visual scripting. In this paper, we explore these key developments as well as

their history, and how these can potentially impact game research.

キーワード：Game Research Methodology, Game Development, Interaction Design

Paper

25©︎2021 Digital Hollywood University DHU JOURNAL Vol.08 2021

 Furthermore, research budgets generally don’t approach

the size of even medium sized games, with even medium

sized game development project budgets potentially being

several millions of dollars large.

 For that reason, researchers who specialize on game

research will often-times base their research on existing

games [9][10], as it’s much less time consuming and much

more economically viable to analyze existing games rather

than build the games by yourself. This has limits of course,

as researchers will be depending on existing content they

generally cannot modify, meaning that comparative research

(especially when the researcher has specific goals) is hard

to conduct.

2. Changes in Game Development Options

 Fortunately, especially in the last decade there have

been a number of developments, both f inancial ly and

technologically, that has significantly lowered the barrier of

entry to game development. We have observed in particular

four key developments that contributed significantly to the

lowering of the barrier of entry.

1. Financial accessibility.

2. Game development knowledge base.

3. Game development middleware.

4. Visual scripting systems.

 In the following chapters, we will go into more detail in

what these four key developments are and how they have

impacted game developers.

3 Financial Accessibility

 Game deve lopmen t i s p r ima r i l y conduc ted us i ng

specialized tools called game engines. These game engines

are responsible for calculating and rendering the real-time

content to screen and oftentimes offer a variety of tools to

make otherwise tedious tasks more manageable and less

time consuming.

 Traditionally, game development companies would make

their own proprietary game engine which would then be used

for their game projects. Examples of these are the Frostbite

engine [11], developed by DICE and used by Electronic Arts,

as well as the Luminous Engine [12], developed and used by

Square Enix as well as its subsidiary Luminous Productions.

Game engines are generally be unavailable to the general

public, like the examples mentioned above, but sometimes

companies decide to al low l icensing of thei r engine.

Examples of this is the Quake Engine, by ID Software and

the Unreal Engine, developed by Epic Games.

 However, licensing a game engine doesn’t come cheap.

While information on the price of licensing is scarce, Gestalt

from Eurogamer stated that a license to the Quake 3 engine [13]

could be around $500,000 per game project, excluding

royalties on the sales of said project. This is of course

unfeasible for researchers, as this only concerns the game

engine itself and not yet any contents created with it.

 There were cheaper options, but generally these options

didn’t offer very robust solut ions or had very l imited

support. One example of this is a game engine called

Virtools [14], which was released in 1993. The software was

only used in a small number of regions in Europe and thus

had a very limited support base. The features were also

very bare, meaning that researchers would have to have in-

depth knowledge of various game development processes in

order to make effective content with it, such as the manual

creation of light maps. Interestingly however, Virtools did

offer a visual scripting solution, something that other game

engines would only start implementing much later. The

limited support however meant that Virtools eventually had

to be discontinued in 2009.

 A major change in the traditional game engine licensing

model occurred in 2004, when Unity Technologies created

a game engine with the name Unity [15]. Rather than aiming

for game developers developing high budget productions,

Unity Technologies instead opted to specif ically target

independent developers with much smaller budgets [16].

For the first 10 years of the software, Unity was sold as is,

with prices ranging from $199 to $1499 [17], prices that

were a massive departure from the usual licensing pricing.

From 2009 onwards, Unity started to offer free versions

of their software as well [17], before changing entirely to a

subscription based service in 2016 [18].

 Shortly after Unity announced their decision to make

one version of Unity free to use in 2009, Epic Games

also released a game engine that was free to use under

the name Unreal Development Kit (UDK) [19]. The Unreal

Development K i t was based on the Unrea l 3 engine

technology, and allowed users to make content for the PC

or IOS platform. While the Unreal 3 engine was technically

also made available for modding game content through

games l ike Gears of War for PC [20], the release of a

completely free UDK was the first time that Epic Games

released the engine for free by itself. While the software

itself was free to use for non-commercial purposes, if a

developer decided to sell their creation, they had to pay

Epic Games a one-time fee of $99 and 25% royalties on

any profit they made over $50,000 [21].

 In 2014, Epic Games released the Unreal 4 engine and

initially charged users a monthly subscription fee of $19 [22].

However, the subscription didn’t only give users access

to the Unreal 4 engine, it also gave them access to the

engine’s source code, which was unheard of before that.

Now users could not only use a fully featured game engine

for a small charge, they could modify the source code as

well. While this required extensive knowledge of C++, it did

mean that users could customize the engine for their own

goals, research included. Finally, one year later Epic Games

decided to remove the monthly subscription fee as well and

make the Unreal 4 engine free to use [23], a model they

have continued to use even with the release of an early

access version of Unreal 5 engine [24].

 Other game engine developers also followed suit, with the

CryEngine [25] becoming free to use in 2018, after having

adopted a “pay what you want” model for a number of

years. At QuakeCon 2005, John Carmack announced that

the id Tech 3 source code (formerly known as the Quake

3 Arena engine) would be made freely available under the

GNU General Public License v2.0 [26].

26©︎2021 Digital Hollywood University DHU JOURNAL Vol.08 2021

4 Game Development Knowledge Base

 Initially, a large reason for why game development was

hard to get into is because knowledge regarding game

development was hard to come by. This didn't only regard

research in to des ign methodo logy or knowledge on

concrete technologies like particular graphical effects, like

we discussed earlier, but also practical knowledge dealing

with how to create 3D content for real-time use or how to

program a game.

 Since game engines were initially only available to major

game developers, it meant that a knowledge base that

could be accessed by all was simply not a necessity. After

all, there was very little use in explaining the usage of the

Quake 3 engine, when said engine could cost $500,000 to

license.

 When Unity Technologies targeted small to medium teams

with their Unity engine, it meant that even people who

were simply making games for a hobby could get into game

development. When Unreal 4 became free to use as well,

game engines experienced a surge in popularity. This meant

that knowledge of how to use the engines effectively also

became more common, for both premium [27][28] as well as

free options (through the use of personal blogs, Youtube

videos, and so on).

 With the engines gaining in popularity, the companies

respons ib le fo r c reat ing these eng ines a lso s ta r ted

organizing conventions specifically meant to dissertate

information regarding their own technologies. In 2017 Unity

Technologies created the Unity Unite convention [29]. Epic

Games created the Unreal Fest [30], an event that allowed for

the sharing of Unreal engine techniques and technologies.

 In past research we conducted into the immersive qualities

of interactive environments [36], we had to prepare a number

of stimuli in the form of game environments. To gather

the impressions that players had of these environments,

we conducted a questionnaire. When the experiment was

conducted, we were relying on Unreal 3 engine technology,

whose source code was inaccessible. This meant that in

order to write out data from the game to external text files,

we had to rely on a technique called “DLL bind”[31], which

required knowledge of DLL creation as well as linking the

created DLLs to UnrealScript, which was Unreal 3 engine’

s programming language. Unfortunately, material on how to

create a DLL that could write out text files was hard to find,

and due to our limited programming ability we had to create

an alternate experiment flow where we constantly interrupted

subjects to fill in questionnaires through external hardware.

In follow up research presently being conducted, we used

the Unreal 4 engine instead. We made another attempt

at writing out text files from within the game, to create an

experiment with a smoother flow. Due to the popularity

of the engine, it was relatively easy to find a tutorial on

this subject [32] and we were able to create a solution that

enabled us to conduct questionnaires from within the game

environment. This would not have been possible without the

Unreal 4 engine being popular enough to have many people

write tutorials for it.

5 Game Development Middleware

 Middleware services for 3DCG and game development

have been around for a while, and come in two forms;

the sale of premade assets that the costumer can include

in their projects or tools that help make the development

process easier.

5.1 Middleware to ease development time
 Initially, game development was a very time consuming

process, as assets made for real time usage had to be

optimized, while trying to keep an acceptable level of detail,

or even outright faking the presence of detail. For instance,

a game ready 3D model would require a number of textures

to render correctly. For games developed for the Playstation

3 (2006) and the XBOX360 (2005), a wide variety of

textures were required to visualize a 3D model. A base color

texture to take care of the colors of the model, a specular

map to deal with specular data, a normal map to generate

fake normal data on a 3D model to make it feel that models

contained more details than they actually did, alpha textures

to make parts of the model invisible, as well as emissive

textures to create the illusion that certain parts of the model

glowed or otherwise emitted light. The Playstation 4 (2013)

and the XBOX One (2013) were capable of rendering

more advanced rendering models, and during this age PBR

(Physically Based Rendering) [33] became the primary means

of rendering textures on 3D models. However, this new model

introduced the need for additional textures to simulate the

difference between conductive and dielectric materials, as well

as textures to simulate the overall roughness and thus how

light would reflect off the surface if it hit.

 Traditionally, all these assets would have to be made by

hand, requiring complicated setups to calculate all these

various maps using a combination of high and low definition

models. Some textures were required to be painted or

modif ied by hand. To reduce the burden of rendering

multiple objects at the same time, game developers would

have to create various LOD (Level of Detail) models, models

that were swapped to models with lower polygon counts to

increase the performance. A wider variety of techniques for

real time graphics optimization existed, but all these would

have to be prepared by hand as well. This meant that even

for the average experiment, the researcher would have to

spend a lot of time just to prepare one single stimuli.

 This started to change around 2000, when a variety of

middleware developers were born. One well-known example

is a company cal led Havok, responsible for a physics

calculation software development kit also known as Havok

Physics [34]. Since its founding, Havok Physics has been

used in more than 600 games. Another famous example is

Speedtree [35], developed by Interactive Data Visualization,

software that was meant to quickly and efficiently generate

various kinds of foliage, a particular type of asset that

would normally require a lot of time to create. InstaLOD [36],

developed by Crunchbase in 2016, would quickly generate

level of detai l meshes, so that the developers would

not have to bother themselves. It was not just limited to

making specific development processes easier. In 2003,

Allegorithmic was founded and would eventually release

Substance Designer and Substance Painter, two software

suits that would make texture generation for real time usage

27©︎2021 Digital Hollywood University DHU JOURNAL Vol.08 2021

a lot easier. For instance, in Substance Designer designers

would create a procedural texture using visual scripting,

which could then easily be rendered out as metallic textures

(to determine conduct ive and d ie lect r ic condi t ions),

roughness textures, normal textures and so on, whereas

normally a developer would have to make these one by one.

Even game engines started incorporating tools into their

engine. The Unreal 3 engine, for instance, had in-engine

tools to generate level of detail meshes or to generate UV

coordinates for light map textures, textures that were used

to create cheap lighting and shading performance wise.

The Unreal 5 engine even offers a direct link to Quixel's

models [37], a company who specializes in the creation of

photo-scanned 3D models and textures and was acquired

by Epic Games in 2019.

5.2 Pre-made assets as middleware
 Middleware software meant to speed up the development

process is not the only major change in the f ie ld of

middleware for game development. Another one is the sale

of premade assets, which users can immediately use in their

projects without having to create it themselves. One well-

known example of a service selling assets to customers

is Turbosquid, a site that sells 3D models and has done

so since 2000. While initially Turbosquid's offerings were

primarily meant for 3DCG (meaning they sold high definition

models that would have difficulty being rendered in a real

time application), currently they also have a number of so-

called "low poly" models on sale, which can be rendered

in real time applications without problems. Another well-

known example is textures.com and gametextures.com, the

former offering a wide variety of textures for various uses

and the latter primarily focusing on textures that can be

used within real time applications. While textures.com was

initially completely free to use, currently they use a credit

system where users can download only a set of textures per

day, and offer a number of premium plans where users get

more credits to use on a monthly basis. There are a variety

of other services, like FreeSound.org, which focusses on

sound effects that can be downloaded at no charge and

Mixamo, a supplier focusing on 3D character models and

animations.

 In 2010 Unity Technology introduced the asset store, an

online marketplace where developers could sell real time

content specifically meant to speed up development time

for other developers. This was the first time that content

specifically developed for a game engine was sold through

a marketplace. The asset store quickly became popular and

now boasts over 70,000 asset packs. The asset store's

success meant that Epic Games also created an online

marketplace when they released the Unreal 4 engine, simply

called the Unreal Engine Marketplace. The Unreal Engine

Marketplace currently offers over 19000 asset packs for

use with the Unreal 4 engine, across a wide variety of

categories.

 I n ou r own expe r i ence , we have f ound t ha t t he

development of rea l- t ime assets became much more

effective when using existing asset packs. In past research [38]

we set out to define the game world as a narrative tool,

and to validate the model we developed, we measured the

immersion rates in digital game environments. To validate

our narrative model, we needed to use game environments

that increased in detail, so we could measure the effects of

environments with and without the narrative elements in our

model. Due to this, the development of a variety of custom

environments was a necessity. However, since all assets

had to be created by hand, it took us 6 months to design

and develop a total of two environments (Figure 1).

Figure 1: Environment Stimuli

 For currently ongoing research, we decided to expand on

that research by measuring the effect of level of detail in

the immersion rates of users, as well as measure how well

interactive environments are capable of conveying narrative.

Like the prior research, this research also heavily depended

on custom made environments, as once again we needed to

increase the level of detail for each environment to be able

to compare the results of each environment. We developed

a total of 6 different core environments and subdivided

this into 3 sets with increasing level of detail, giving us a

total of 18 stimuli. Using a number premade assets packs

and functionality [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50], we

managed to reduce our total development time to 2 months

for these 6 core environments (Figure 2). The increased

number of st imul i meant that we could conduct more

accurate experiments on the subject of immersion levels in

digital interactive environments as well.

Figure 2: Environment Stimuli for continuation experiment

28©︎2021 Digital Hollywood University DHU JOURNAL Vol.08 2021

6 Visual Scripting Systems

 The development of games requires a deep knowledge of

programming, from the programming of game-play, to the

programming of real-time graphics to render out the game

to the screen. Especially for big budget game productions,

this need for programming is big enough that programming

is often divided into multiple specializations. This has meant

up until now that unless a developer had programming

skills, a developer would be unable to create digital games.

While this barrier has not entirely been resolved yet, it has

gotten more accessible through the use of a concept called

“visual scripting.”

 Visual scripting is not an entirely new concept. The

f i r s t exper iments w i th V isua l Scr ip t ing were a l ready

being conducted in 1960-1970, in the form of scripting

languages like Pygmalion [51] and GRaIL (Graphical Input

Language) [52]. However, it wasn’t until Microsoft developed

Visual Basic in 1991 that visual scripting started to become

more popular. While the current image of visual scripting

differs quite a bit from programming using an IDE (Integrated

Development Environment) that Visual Basic helped pioneer [53],

Visual Basic was responsible for making programming more

visual.

 However, for the longest time, any other efforts to create

visual scripting was largely constrained to the f ield of

education. For instance, a visual programming language

engineered at MIT with the name Scratch [54][55], was

primarily meant to teach younger students how to think

logically.

 In recent years, various developers of game engines have

started adding visual scripting features to their engines.

A potential reason for this development could be the ever

increasing scope and cost of game development. One

calculation by Raph Koster states that from 1985 to 2005,

the cost of games has multiplied by 22 times [56]. With the

cost of development ever increasing, it would make sense

for developers to introduce visual scripting tools so they

could involve non-programmers in programming heavy

development processes to stream-line production.

 In 2007, Epic Games released the Unreal 3 engine, which

introduced visual scripting in the form of two editors. One of

the editors was called Kismet and the other was a material

editor, one of the earliest examples of a shader development

tool that made use of visual scripting. While Kismet was

not exactly user friendly, it would eventually become the

basis of a system called Blueprint in the Unreal 4 engine,

a tool that would come to encompass a major part of the

engine. Still, despite Kismet being a visual scripting tool, it

was primarily meant to script simple occurrences and events

in game environments, and wasn’t meant to be used to

create entire games with. As such, programming was still a

necessity for development.

 Still, around this time, other engines that either added

visual scripting solutions or were developed around a visual

scripting tool also started to be released. The open-source

Godot game engine [57] was released in 2014, includes

visual scripting and is often lauded for its ease of use.

Crytec incorporated a visual scripting tool by the name of

Schematyc into their game engine by the name of CryEngine

in 2016. Unity Technologies as well, acquired the developer

of the Bolt visual scripting middleware, and incorporated

the tool into their engine in 2021 [58]. Other software as

well have started embracing visual scripting. The Substance

Designer software allows for procedural texture generation

creation using a visual scripting interface, and a variety of

3D software suits (like 3D Studio Max and Maya) now have

visual scripting systems for shader creation. Houdini goes

a step further, and has a visual scripting system for non-

shader related functionality as well (like 3D model creation),

and presents it as a selling point for their software [59].

In our own experience, we found that the existence of visual

scripting systems helped us in 2 significant ways.

1. We were able to significantly speed up our prototyping

process, by using a combination of the default templates

present within the Unreal Engine, templates that take

the form of a basic game. Due to this combination, we

were able to get a game working in less than 2 hours of

development time.

2. We were able to integrate questionnaires into the game

environment with relative ease using the visual scripting

tools present within the Unreal Engine (Figure 3). In

our prior research [38], we had no way of integrating

questionnaires into the game prototype, meaning that we

had to interrupt participants of our research constantly by

asking them to fill in questionnaires. The visual scripting

system of Unreal Engine allowed us to easily create a

user interface that recorded the user input. With testing

methods integrated directly into the game content, not

only did we not have to interrupt the participants anymore,

additional testing venues like online testing also became

more viable and secure.

 With the rise of visual scripting systems and how robust they

have become as development tools, it has become a lot easier

even for non-programmers to make functional games.

Figure 3: Questionnaire conducted from within the game
prototype itself. The questionnaire system was entirely developed

using “blueprint,” Unreal Engine's visual scripting system.

7. Conclusion

 Game development is a uniquely time consuming and

costly activity, requiring an in-depth knowledge of a wide

variety of developments fields, including but not limited to

29©︎2021 Digital Hollywood University DHU JOURNAL Vol.08 2021

programming, visual design and interaction design. As a

game researcher, this meant that one had to spend a long

time developing the material required for the research,

rely on hired help, or instead analyze games that has

already been developed, all options that carried significant

drawbacks.

 In recent years however the si tuat ion has markedly

improved through 4 key developments; game engines and

software required for game development have become more

financially accessible, the accessible knowledge base on

game development has dramatically increased, a market has

formed around middleware and assets specifically meant for

speeding up game development and finally, the increasing

popularity of visual scripting has made it so that even non-

programmers are now capable of creating functional games.

 In our own exper ience, we have found that these

four deve lopments have had a t remendous pos i t i ve

impact on our game research. Through the decreased

required development time, and the increased options for

development, we were not only able to develop much more

content in a much smaller timeframe, but we were able to

create additional functionality that allowed us to conduct

questionnaires and other testing from within the game

environment itself.

 Taking all of this into account, we conclude that research

options for game research has expanded dramatical ly,

which is particularly positive for the field of game design

methodology research, which before was relatively hard and

time consuming to do.

References
[1] Mata Haggis-Burridge et al, et al, ridge et al, nt, we

conclude thHorizon 2020 Research and Innovation Programme

– Grant Agreement No 732332 (2018)

[2] VPRO: t Agreement No 732332No ation Programme –

G”V(Accessed 2021-07-10)

[3] Carlos Gonzalez-Ochoa: arlos Gonzalez-Ochoa:Uncharted

4”ncharted 42016 Advances in Real-Time Rendering in

Games

[4] Michael Brandse: “The Shape of Challenge - Using

Affordance Design to Create Challenge within Games”

Human Computer Interaction International (2017)

[5] David Shafer, Robert Yang: “Level Design Workshop:

Invisible Intuition: Blockmesh and Lighting Tips to Guide

Players and Set the Mood”Game Developers Conference

(2018) https://www.gdcvault.com/play/1025360/Level-

Design-Workshop-Invisible-Intuition (Accessed 2021-07-13)

[6] Phil Co: iLevel Design for Gamesom/New Riders (2006).

[7] Tekinbaş, Katie Salen, and Eric Zimmerman: mRules of

play: game design fundamentals.ules of play: game design fun

[8] Jason Schre ie r, hB lood, sweat , and p ixe ls : the

triumphant, turbulent stories behind how video games are

madele-Intuition (Accessed 202, pp 54.

[9] Constantino Oliva: “The Musical Ludo Mix of Taiko

no Tatsujin” Transactions of the Digital Games Research

Association (2021), Vol. 5 No 2, pp. 131-160

[10] Dalila Forni: “Horizon Zero Dawn: The Educational

In f luence o f V ideo Games in Counte rac t ing Gender

Stereotypes” Transactions of the Digital Games Research

Association (2019), Vol. 5 No. 1, pp. 77-105.

[11] Electronic Arts: “Frostbite Engine – the most adopted

platform for game development” https://www.ea.com/

frostbite (Accessed 2021-07-20)

[12] ComicBook: “Square Enix Shows Off Incredible,

Cutting-Edge Tech Demo” https://comicbook.com/gaming/

news/square-enix-back-stage-tech-demo-luminous-engine/

(Accessed 2021-07-20)

[13] Eurogamer: “The Engine Licensing Game - The ups

and downs of l icensing a game engine” https://www.

eurogamer.net/articles/engines (Accessed 2021-07-20)

[14] 3DVIA: “3DVIA Virtools – Demo Showcase” https://

www.3ds.com/fileadmin/PRODUCTS/3DVIA/3DVIAVirtools/

demoshowcase/html/index.html (Accessed 2021-07-20)

[15] Unity Technologies: “Unity Real-Time Development

Platform | 3D, 2D, VR/AR Engine” https://unity.com/

(Accessed 2021-07-20)

[16] TechCrunch: “How Unity built the world’s most popular

game engine” ht tps:// techcrunch.com/2019/10/17/

how-unity-built-the-worlds-most-popular-game-engine/

(Accessed 2021-07-20)

[17] Unity Technologies: “A Free Unity?”https://blog.unity.

com/technology/a-free-unity (Accessed 2021-07-20)

[18] Unity Technologies: “Evolution of our products and

pricing” https://blog.unity.com/community/evolution-of-our-

products-and-pricing (Accessed 2021-07-20)

[19] IGN: “Epic Games Announces Unreal Development

Kit, Powered by Unreal Engine 3”https://www.ign.com/

ar t ic les/2009/11/05/epic-games-announces-unrea l-

development-kit-powered-by-unreal-engine-3 (Accessed

2021-07-20)

[20] Ep ic Games: “UDK Gears Mod Home” ht tps://

docs.unrealengine.com/udk/Three/GearsModHome.html

(Accessed 2021-07-20)

[21] Epic Games: “UDK Licensing Resources” https://www.

unrealengine.com/en-US/previous-versions/udk-licensing-

resources (Accessed 2021-07-20)

[22] Engadget: “Epic Games' Unrea l Engine 4 now

available by subscription for $19, headed to OS X and

more” https://www.engadget.com/2014-03-19-unreal-

engine-4-available.html (Accessed 2021-07-20)

[23] Epic Games: “If You Love Something, Set It Free”

https://www.unrealengine.com/en-US/blog/ue4-is-free

(Accessed 2021-07-20)

[24] Epic Games: “Unreal Engine 5” https://www.unrealengine.

com/en-US/unreal-engine-5 (Accessed 2021-07-20)

[25] Crytec: “CryEngine | the Complete Solution for next

generation game development by CryTec” https://www.

cryengine.com/ (Accessed 2021-07-20)

[26] BitTech: “Quake 3 source code released” https://bit-

tech.net/news/gaming/quake3_source_code/1/ (Accessed

2021-07-20)

[27] PluralSight: “Technology Skills for Business” https://

www.pluralsight.com/ (Accessed 2021-07-27)

[28] Udemy: “Online Courses – Learn Anything, on Your

Schedule” https://www.udemy.com/ (Accessed 2021-07-27)

[29] Un i ty Techno log ies: “The Most Popu la r Event

for Game, Animation & Industr ia l Developers | AR/VR

Conference”https://unity.com/events/unite (Accessed

30©︎2021 Digital Hollywood University DHU JOURNAL Vol.08 2021

2021-07-27)

[30] Epic Games: “Unreal Fest Europe 2020” https://www.

unrealengine.com/en-US/events/unreal-fest-europe-2020

(Accessed 2021-07-27)

[31] Ep ic Games: “Ca l l i ng DLLs f rom Unrea lSc r ip t

(DLLBind)” https://docs.unrealengine.com/udk/Three/

DLLBind.html (accessed 2021-08-03)

[32] Youtube: “UE4 / Unreal Engine 4 / Saving to Text File (CSV)

C++”https://www.youtube.com/watch?v=uZPzTN5Debc

(Accessed 2021-08-03)

[33] Marmoset: “Physically-based Rendering, and you

can too!”https://marmoset.co/posts/physical ly-based-

rendering-and-you-can-too/ (Accessed 2021-07-30)

[34] Havok: “Havok Physics” https://www.havok.com/

havok-physics/ (Accessed 2021-07-30)

[35] In teract ive Data V isua l iza t ion: “3D Vegetat ion

Modelling and Middleware”https://store.speedtree.com/

(Accessed 2021-07-30)

[36] Crunchbase: “Everything you need for the production

and automatic optimization of 3D content”https://instalod.

com/ (Accessed 2021-07-30)

[37] Quixel: “Bridge is now a part of Unreal Engine 5 Early

Access”https://quixel.com/blog/2021/5/26/bridge-is-now-

a-part-of-unreal-engine-5-early-access (Accessed 2021-

07-30)

[38] Michael Brandse, Kiyoshi Tomimatsu: “Immersion

Leve l s i n D ig i t a l I n te rac t i ve Env i ronmen ts” Kanse i

Engineering and Emotion Research International (2014)

[39] Unreal Engine Marketplace: “Brushify - Tropical Pack”

https://www.unrealengine.com/marketplace/en-US/product/

brushify-tropical-pack (Accessed 2020-7-30)

[40] Unreal Engine Marketplace: “Brushify - Arctic Pack”

https://www.unrealengine.com/marketplace/en-US/product/

brushify-arctic-pack (Accessed 2020-7-30)

[41] Unreal Engine Marketplace: “Crystal Mines - Scene

and Assets”

https://www.unrealengine.com/marketplace/en-US/product/

crystal-mines-scene-and-assets (Accessed 2020-7-30)

[42] Unreal Engine Marketplace: “Environment Set”

https://www.unrealengine.com/marketplace/en-US/product/

environment-set (Accessed 2020-7-30)

[43] Unreal Engine Marketplace: “Flowers and Plants

Nature Pack”

https://www.unrealengine.com/marketplace/en-US/product/

flowers-and-plants-nature-pack (Accessed 2020-7-30)

[44] Unreal Engine Marketplace: “Infinity Blade: Grass

Lands”

https://www.unrealengine.com/marketplace/en-US/product/

infinity-blade-plain-lands (Accessed 2020-7-30)

[45] Unreal Engine Marketplace: “Low Poly Snow Forest”

https://www.unrealengine.com/marketplace/en-US/product/

low-poly-snow-forest (Accessed 2020-7-30)

[46] Unreal Engine Marketplace: “Meadow - Environment Set”

https://www.unrealengine.com/marketplace/en-US/product/

meadow-environment-set (Accessed 2020-7-30)

[47] Unreal Engine Marketplace: “Old Mine Tunnel & Caves”

https://www.unrealengine.com/marketplace/en-US/product/

old-mine-tunnel-caves (Accessed 2020-7-30)

[48] Unreal Engine Marketplace: “Spring Landscape”

https://www.unrealengine.com/marketplace/en-US/product/

spring-landscape (Accessed 2020-7-30)

[49] Unreal Engine Marketplace: “Stone Boulders”

https://www.unrealengine.com/marketplace/en-US/product/

stone-boulders (Accessed 2020-7-30)

[50] Unreal Engine Marketplace: “SHADERSOURCE -

Tropical Ocean Tool” https://www.unrealengine.com/

marketplace/en-US/product/beach-wave-water (Accessed

2020-7-30)

[51] David Canfield-Smith: “Pygmalion: A Creative Programming

Environment.” Unpublished doctoral dissertation (1975)

[52] T.O. Ellis, J. F. Heafner, W. L. Sibley: “The Grail Project:

An Experiment in Man-Machine Communications.” Santa

Monica, California, RAND Corporation (1969)

[53] Mend i x : “The H i s to r y o f V i sua l Deve lopmen t

Environments: Imagine There’s no IDEs. It’s Difficult if You

Try.” https://www.mendix.com/blog/the-history-of-visual-

development-environments-imagine-theres-no-ides-its-

difficult-if-you-try/ (Accessed 2020-7-30)

[54] Bubble: “A History of Visual Programming: From Basic

to Bubble”https://bubble. io/blog/visual-programming/

(Accessed 2020-7-30)

[55] MIT: “Create stories, games, and animations

Share with others around the world”https://scratch.mit.edu/

(Accessed 2020-7-30)

[56] Raph Koster: “The cost of games”https://www.raphkoster.

com/2018/01/17/the-cost-of-games/ (Accessed 2020-7-30)

[57] Godot Engine: “Free Open Source 2D and 3D Game

Engine”https://godotengine.org/ (Accessed 2020-7-30)

[58] Unity Technologies: “Bolt visual scripting is now

included in all Unity plans”https://blog.unity.com/news/

bolt-visual-script ing-is-now-included-in-al l-unity-plans

(Accessed 2020-7-30)

[59] Houdini: “3D Procedural Software for Fi lm, TV &

Gamedev”ht tps: / /www.s ide fx .com/products/houd in i /

(Accessed 2020-7-30)

